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The conditions that should be realized in the process of continuous mould casting of alloys on the basis of
simultaneous account for the factors determining the formation of the near-wall gas interlayer and the heat
transfer are elucidated. In this case, forced rejection of the alloy from the wall by a gas blown into the zone
of moulding of a casting is provided. In the general case where the gas is blown through a porous wall,
near-wall gas cavities merging into a gas film are formed at the working surface of the wall. The problem
posed in this investigation is a typical multifactor problem, in which it is quite appropriate to use the method
of the theory of experiment design.

One promising new trend in the development of the process of continuous casting is moulding of a casting in
a mould without friction on the walls, which can allow one to significantly increase the productivity of the process,
improve the quality of castings, and extend the range of cast alloys as compared to those obtained in conventional
(metallic or graphite) slip moulds [1]. In this respect, of great interest is the method involving forced rejection of the
alloy from the wall by a gas blown in the zone of moulding of a casting [2].

There are a number of technical proposals of methods and apparatuses for solution of this problem [3, 4]. The
complexity of the problem requires its step-by-step investigation, and one basic question is a search for the rational
conditions of contactless moulding of castings. As yet, there is no unique approach on this point. Thus, in [3] it is
noted that the delivery of a gas to the gap between the wall with holes and the melt must be carried out under such
conditions (amount, pressure) that the gas does not bubble through the melt [5, 6]. In [4], this process is analyzed on
the assumption that a pressure equal to the metallostatic pressure in the melt is produced in the gap between the melt
and the wall.

This investigation is devoted to elucidation of the conditions that should be realized in this process on the
basis of simultaneous account for the factors determining the formation of the near-wall gas interlayer and the heat
transfer. We proceed from the fact that in the general case where a gas is blown through a porous wall [2], near-wall
gas cavities merging into a gas film are formed at the working surface of the wall. Moreover, it follows from the cal-
culation results obtained earlier that the smaller the radii of the pores rh and of the gas cavities Rcav, the larger the
permissible range of the gas pressure in the interlayer, and the pressure can be maintained at the necessary level in the
melt layer [2]. To eliminate the contact of the molten-metal medium with the wall the gas gap must exceed the sur-
face asperities. Accordingly, the value of the minimum gap can be taken to be (1−1.5)⋅10−5 m. Thus, the desirable
range of thicknesses of the gas interlayer will roughly be ξgap = (1.1−4)⋅10−6 m. In this case, the radius of the gas
cavities must accordingly be no larger than ξgap [2, 6], i.e., Rcav= (6−20)⋅10−5 m. Based on the above calculations for
a 1-m level of the melt mirror (at the metallostatic pressure Pm = 0.09⋅105 Pa), the values of Rcav, ξgap, Pc, Pm, and
K have been calculated in [2] as functions of the radius of the pores rh in the wall (for a wide range). 

In investigating the characteristics of an apparatus for contactless moulding of a molten-metal medium it is
appropriate to use, as the response function [7], the intensity of heat transfer (heat-transfer coefficient) from the solidi-
fying metal to the porous element and then to the solid wall with a cooling system. Under the conditions of a small

Journal of Engineering Physics and Thermophysics, Vol. 75, No. 2, 2002

aInstitute of Mechanics, M. V. Lomonosov Moscow State University, Moscow, Russia; bN. E. Bauman Mos-
cow State Technical University, Moscow, Russia; cInstitute of Nonferrous Metal Working, Moscow, Russia; email:
sidn-ni@.mail.ru. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 75, No. 2, pp. 132–138, March–April, 2002.
Original article submitted May 21, 2001; revision submitted September 14, 2001.

1062-0125/02/7502-0432$27.00  2002 Plenum Publishing Corporation432



gap, we proceed from the assumption that when the gas is delivered through a porous wall near-wall gas cavities
merging into a gas film are formed at the working surface of the wall.

It has been established in earlier investigations [1–3] that for a given system of delivery of the gas and a
given arrangement of the cooling system (by water, gas, and so on) the heat-transfer coefficient K depends on the fol-
lowing factors: consumption of the working gas Gg, consumption of the cooling material Gw, thickness of the gas in-
terlayer ξgap, capillary pressure in a gas cavity Pc, and thickness of the porous-element wall δ. Our investigation has
been aimed at determining the relationship between the heat-transfer intensity K and the value of the indicated factors.

In accordance with the requirements of the theory of experiment design, the factors must be controlled, meas-
urable, independent, and compatible [8]. This means that having selected the required values of the factors, an experi-
menter must be able to use any combination of them at points of the design [9] so as to determine the value of the
response function in each combination of the values of the factors. In the case considered, the response function, i.e.,
the intensity of heat transfer in an apparatus of contactless moulding of a molten-metal medium, as well as the factors
Gg, Gw, ξgap, Pc, and δ, conform to the requirements of controllability, independence, measurability, and compatibility
[8]. With allowance for the possibilities of the mould tested, the experimental region of the factorial space has the fol-
lowing boundaries:

 X1 = Gg = (0.3 − 1.2)⋅10
−3

  kg ⁄ sec ;   X2 = Gw = (0.75 − 1.25)⋅10
−3

  m
3 ⁄ sec ;

X3 = ξgap = (15 − 300)⋅10
−6

  m ;   X4 = Pc = (0.2 − 1)⋅10
5
  Pa ;   X5 = δ = (3 − 6)⋅10

−3
  m .

For the convenience of subsequent operations, the independent variables (factors) are usually reduced to di-
mensionless (coded) variables by relations of the form [7–9]

xj = 
Xj − Xj0

Jj
 , (1)

where Xj0 = (Xmax + Xmin)/2. The minimum value of each factor in coded values corresponds to −1, while the maxi-
mum value corresponds to +1 [9]. The initial level of the factors Xj0, the interval of their variation, and their maxi-
mum and minimum values are given in Table 1.

TABLE 1. Coded Values of the Factors and the Response Function at the Indicated Points of the Design

No. of
experiment x0 x1 x2 x3 x4 x5 Gg⋅10−3 Gw⋅10−3 ξgap⋅10−6 Pc⋅105 δ⋅10−3 K⋅109

1 + – – – – + 0.3 0.75 15 0.2 6 1.7
2 + + – – – – 1.2 0.75 15 0.2 3 2
3 + – + – – – 0.3 1.25 15 0.2 3 1.9
4 + + + – – + 1.2 1.25 15 0.2 6 1.6
5 + – – + – – 0.3 0.75 300 0.2 3 1.1
6 + + – + – + 1.2 0.75 300 0.2 6 0.9
7 + – + + – + 0.3 1.25 300 0.2 6 0.8
8 + + + + – – 1.2 1.25 300 0.2 3 0.8
9 + – – – + – 0.3 0.75 15 1 3 1.2
10 + + – – + + 1.2 0.75 15 1 6 1.1
11 + – + – + + 0.3 1.25 15 1 6 1.0
12 + + + – + – 1.2 1.25 15 1 3 0.9
13 + – – + + + 0.3 0.75 300 1 6 0.8
14 + + – + + – 1.2 0.75 300 1 3 0.7
15 + – + + + – 0.3 1.25 300 1 3 0.6
16 + + + + + + 1.2 1.25 300 1 6 0.5
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Let us consider the features of experiment design under the above-indicated conditions in the case where all
the combinations of the limiting values of the factors are realized, i.e., in the case of the full factorial experiment
(FFE) of first order [7, 9]. In the case of the full factorial experiment for a linear model, the number of experiments
is N = 2k. Since the heat-transfer intensity depends on the five factors, the necessary number of experiments in the full
factorial experiment is 25 = 32.

From the results of the full factorial experiment, one can derive the regression equation including all the in-
teractions of the factors to the fourth order inclusive [9]. In this case, interactions of the highest orders are not very
significant. The experience obtained in the previous experiments [1–4] suggests that the major part of the interactions
are insignificant. This allowed us to restrict ourselves to a simpler description and decrease the volume of the experi-
ment by a factor of two, i.e., to use a fractional factorial experiment, i.e., a half-replicate of a full factorial experiment
containing 16 points. The selected half-replicate is characterized by the generating relation x5 = x1x2x3x4 [8], and the
values of the factors at the points of the design correspond to those presented in Table 1. This table also gives the
coded values of the factors and the results of determination of the response function at the indicated points of the de-
sign. All the measurements were made at points close to those indicated in the table.

From these values, according to formulas of the form

bj = 

∑ 

i=1

N

 Ki xji

N
 , (2)

where xji is the value of the jth factor in the ith experiment and Ki is the heat-transfer intensity in the ith experiment,
we have determined the coefficients of the regression equation.

In the course of the fractional factorial experiment, the estimates of the coefficients are mixed. Thus, for the
selected half-replicate determined by the generating relation x5 = x1x2x3x4 and, consequently, the determining contrast
1 = x1x2x3x4x5, the coefficients determine such mixed (confounded) estimates as

b1 → β1 + β2345 ,   b2 → β2 + β1345 ,   b3 → β3 + β1245 ,   b4 → β4 + β1235 ,   b5 → β5 + β1234 ,   b12 → β12 + β345 ,

b13 → β13 + β245 ,   b14 → β14 + β235 ,   b15 → β15 + β234 ,   b23 → β23 + β145  and  so on

Here b are the estimates of the coefficients of the regression equation, and β are the true values of the regression co-
efficients. It is assumed that all the interactions of second, third, and fourth order are insignificant and tend to zero.
To statistically estimate the quality of the model obtained, it is necessary to determine the error mean square (repro-
ducibility variance) from the data of m parallel experiments:

S
2
 = 

∑ 

k=1

m

 (Kki − K
__

i)
2

m − 1
 . (3)

Here, K
__

i is the arithmetic mean value of the response function in m parallel experiments. In this work, the error mean
square was estimated by the data of five parallel experiments at the center of the design, i.e., at x1 = x2 = x3 = x4 =
x5 = 0.

The confidence interval of the regression coefficients is

∆bj = % 
tS

√N
 . (4)

Here, t is the tabular value of the Student criterion for the considered number of degrees of freedom and the selected
significance level (usually 0.05). In our case, where the number of degrees of freedom is equal to four and the sig-
nificance level is α = 0.05, the value of the criterion is t = 2.78. Comparison of the numerical values of the regression
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coefficients to the confidence interval allows the conclusion that a coefficient is significant if its absolute value is
larger than the confidence interval. The residual variance is

Sr
2
 = 

∑ 

i=1

N

 (Ki − K
^

i)
2

N − l
 , (5)

where Ki are the results of the experimental determination of the response function and K
^

i are the data of the calcu-
lation of K at the same point from the regression equation. 

The calculated Fisher criterion is

Fcal = 
Sr

2

S
2 . (6)

If Fcal is smaller than the tabular value Ftab for the corresponding degrees of freedom of the numerator f1 = N − l and
the denominator f2 = m − 1 at a given significance level, the equation obtained describes the experiment adequately. In
the five experiments carried out at the center of the design, we have obtained the following values of Ki0 (i = 1, 2,
..., 5): K10 = 0.97, K20 = 0.99, K30 = 1.09, K40 = 1, and K50 = 0.92. Consequently:

K
__

0 = 0.994 ,   S
2
 = 

∑ 

i=1

5

 (Ki0 − K
__

0)
2

m − 1
 = 38.3⋅10

−4
 .

Since, in the case considered, t = 2.78, we have |∆bj| = tS ⁄ √N  = 2.78⋅6.19⋅10−2 ⁄ 4 = 0.043.
Comparing the values of the coefficients of the regression equation to the confidence interval ∆bj, it must be

borne in mind that all the coefficients at xi except the coefficient at x1 are significant, and only the b25, b34, and
b45 coefficients of the coefficients of pair interaction are significant. Thus, the linear model of the heat-transfer inten-
sity in an apparatus for contactless moulding of molten-metal media has the form

K
^

 = b0 + b2x2 + b3x3 + b4x4 + b5x5 + b25x2x5 + b34x3x4 + b45x4x5 .

Substituting coefficients b, we obtain

K
^

 = 1.1 − 0.0875x2 − 0.325x3 − 0.25x4 − 0.05x5 − 0.0563x2x5 + 0.125x3x4 + 0.05x4x5 . (7)

In order that the relation obtained can be used in practice, it is necessary to bring it to the full scale by for-
mula (1). After rearrangements, the above dependence takes the form

K
^

 = 2.09 + 0.396Gw − 0.003ξgap − 1.345Pc + 0.067δ − 0.15Gwδ + 0.002ξgap Pc + 0.083Pcδ . (8)

The residual variance is

Sr
2
 = 

∑ 

i=1

N

 (Ki − K
^

i)
2

N − l
 ,   N = 16,   l = 8. 

Substitution of the results of the algebraic calculations into the formula for the residual variance gives Sr
2 =

0.0166. Then, according to the Fisher criterion:

Fcal = 
Sr

2

S
2
 = 4.33 ;   Ftab = F0.05 (N − l ; m − 1) = F0.05 (8 ; 4) = 6.04 .
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Since Fcal < Ftab, the model obtained is adequate to the experimental data. To verify the quality of the model obtained
and separate the nonmixed influence of individual parameters and the effects of interaction, we added 16 more experi-
ments necessary for realization of the design of the full factorial experiment to the experiments of a half-replicate. The
confidence interval of the regression coefficients is

 ∆bj  = 
tS

√N
 = 0.03 .

When the coefficients of the regression equation, obtained in the previous case, are compared to the confi-
dence interval ∆bj, it is seen that all the coefficients bj are significant, the coefficients  b12, b34, and b45 of the coef-
ficients of pair interaction are significant, and only the coefficient b1235 of the coefficients characterizing the
interactions of third order is significant. The coefficient b12345 is also significant. All the other coefficients are insig-
nificant. Thus, the linear model of the heat-transfer intensity has the form

K
^

 = b0 + b1x1 + b2x2 + b3x3 + b4x4 + b5x5 + b12x1x2 + b34x3x4 + b45x4x5 + b1235x1x2x3x5 + b12345x1x2x3x4x5 .

After substitution of the obtained values of the coefficients b, the dependence takes the form

K
^

 = 1.17 − 0.016x1 − 0.117x2 − 0.305x3 − 0.298x4 − 0.07x5 − 0.036x1x2 +

+ 0.102x3x4 + 0.036x4x5 + 0.048x1x2x3x5 − 0.07x1x2x3x4x5 . (9)

Statistical estimation of the quality of the model obtained is made in the same way as for the model obtained
in the fractional factorial experiment:

S
2
 = 38.3⋅10

−4
 ,   Sr

2
 = 

∑ 

i=1

N

 (Ki − K̂i)
2

N − l
 ,   N = 32 ,   l = 11 ;   Sr

2
 = 0.008 .

Then, according to the Fisher criterion:

Fcal = 
Sr

2

S
2
 = 

0.008

38.3⋅10
−4

 = 2.09 ,   Ftab = F0.05 (N − l ; m − 1) = F0.05 (21 ; 4) = 5.8 .

If Fcal < Ftab, the model obtained describes the experimental data adequately.
To use the equation obtained in practice it is necessary to bring it to the full scale by formula (1). Then re-

lation (9) will take the form

K
^

 = 6.205 − 4.326Gg − 3.609Gw − 0.03ξgap − 5.163Pc − 0.833δ + 4.19GgGw + 0.03Gg ξgap + 5.16GgPc +

+ Ggδ + 0.03Gw ξgap + 3.868GwPc + 0.75Gwδ + 0.03Pc ξgap + 0.005ξgapδ + 0.92Pcδ − 0.03Gg ξgapGw −

− 5.16GgPcGw − 0.001GgδGw − 0.033Gg ξgapPc − 0.004Gw ξgapδ − 0.858PêGwδ − 0.006Pcξgapδ +

+ 0.033GwGg ξgapPc + 0.006GwGg ξgapδ + 1.146GgGwPcδ + 0.007Gg ξgapPcδ + 0.006GwPcδ ξgap − 0.007GâPêδ ξçGã .

It should be noted that the mean value of the function at the center of the design (according to the parallel
experiments) K

__
 = 0.994 differs markedly from the value K0 = b0 = 1.17 obtained with the help of the linear model.

Despite the fairly high accuracy of the obtained linear model of the heat-transfer intensity in an apparatus for contact-
less moulding of a molten-metal medium, the regularities investigated can be expressed in the form of a power func-
tion [9]:
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K
^

 = b0 (Gg)
b1

 (Gw)b2
 ξgap

b3
 Pc

b4
 δb5

 . (10)

Having taken the logarithm of the above dependence, we obtain a linear model relative to the new factors Zi = ln Xi
without interactions

Y = ln K
^

 = ln b0  + b1 ln (Gg) + b2 ln (Gw) + b3 ln (ξgap) + b4 ln (Pc) + b5 ln δ

or

Y = α0 + b1Z1 + b2Z2 + b3Z3 + b4Z4 + b5Z5 .

Having conducted N experiments with simultaneous variation of our five factors, we write Eq. (10) in matrix
form:

Y = Z ⋅ B , (11)

where

Z = 




















z0
1

z0
i

z0
N

     

z1
1

...

...

z1
i

...

...

z1
N

     

z2
1

...

...

z2
i

...

...

z2
N

     

z3
1

...

...

z3
i

...

...

z3
N

     

z4
1

...

...

z4
i

...

...

z4
N

     

z5
1

z5
i

z5
N





















 = 





















1

1

1

     

ln (X1
1)

...

...

ln (X1
i )

...

...

ln (X1
N)

     

ln (X2
1)

...

...

ln (X2
i )

...

...

ln (X2
N)

     

ln (X3
1)

...

...

ln (X3
i )

...

...

ln (X3
N)

     

ln (X4
1)

...

...

ln (X4
i )

...

...

ln (X4
N)

     

ln (X5
1)

ln (X5
i )

ln (X5
N)





















 ,

B = 
















α0

b1

b2

b3

b4

b5
















 ,   Y = 


















ln K1
...

...

ln (Ki)
...

...

ln (KN)


















 .

According to the theory of experiment design, the least-squares method is used for numerical estimation of the coeffi-
cients of the polynomial model describing the behavior of the system investigated. To determine the regression coeffi-
cients by this method, it is necessary to minimize the sum of the squares of deviations:

  ∑ 

i=1

N

 (ln Ki − α0z0
i
 − b1z1

i
 − b2z2

i
 − ... − b5z5

i )2
 .

Setting the partial derivatives of this square form with respect to variables α0, b1, b2, b3, b4, and b5 equal to zero, we
obtain the system of so-called normal equations

α0  ∑ 

i=1

N

 (z0
i )2

 + b1  ∑ 

i=1

N

 z0
i
z1
i
 + ... + b5  ∑ 

i=1

N

 z0
i
z5
i
 =  ∑ 

i=1

N

 z0
i
 ln Ki ;
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α0  ∑ 

i=1

N

 z0
i
z1
i
 + b1  ∑ 

i=1

N

 (z1
i )2

 + ... + b5  ∑ 

i=1

N

 z1
i
z5
i
 =  ∑ 

i=1

N

 z1
i
 ln Ki ;

...          ...          ...          ...          ...          

α0  ∑ 

i=1

N

 z0
i
z5
i
 + b1  ∑ 

i=1

N

 z5
i
z1
i
 + ... + b5  ∑ 

i=1

N

 (z5
i )2

 =  ∑ 

i=1

N

 z5
i
 ln Ki .

To find the regression coefficients of interest to us, it is necessary to solve the system of normal equations
relative to unknown quantities α0, b1, b2, b3, b4, and b5.

In matrix form, the system of normal equations has the form

Z
t⋅Z⋅B = Z

t⋅Y . (12)

On condition that Zt⋅Z is the nondegenerate matrix (where the superscript t means transposition), we find the matrix
(Zt⋅Z)−1 reverse to the matrix Zt⋅Z. Having multiplied from the left both sides of the matrix equation (12) by
(Zt⋅Z)−1, we obtain (Zt⋅Z)−1⋅(Zt⋅Z)⋅B = B = (Zt⋅Z)−1⋅Zt⋅Y.

The regression coefficients are determined by the expressions

α0 =  ∑ 

k=0

5

 c0k  ∑ 

j=1

N

 z0
j
 ln Kj ;     bi =  ∑ 

k=0

5

 cik  ∑ 

j=1

N

 z0
j
 ln Kj ,

where cik is the element of the (Zt⋅Z)−1 matrix at the intersection of the ith line and the kth column of this matrix.
The foregoing allows the conclusion that the coefficients of the linear model obtained after taking the loga-

rithm can be determined, as earlier, from a multifactorial experiment (full factorial experiment or fractional factorial
experiment). Since in this case the linear design contains only limiting values (%1), the design matrix of the fractional
factorial experiment will be the same as earlier (only the center of the design shifts), and the initial data can be used
to calculate the regression coefficients. To obtain the error mean square, we used the data of m = 5 experiments at the
center of the design Ki0, where i = 1, ..., 5, and made the following calculations:

Y10 = ln K10 = − 0.03 ;   Y20 = ln K20 = − 0.01 ;   Y30 = ln K30 = 0.086 ;   Y40 = ln K40 = 0 ;

Y50 = ln K50 = − 0.083 ;   Y
__

0 = 
1
m

  ∑ 

i=1

m

 ln Ki0 = 
1
5

  ∑ 

i=1

5

 ln Ki0 = − 0.0074 .

Then the sought variance is equal to

S
2
 = 

1
m − 1

  ∑ 

i=1

m

 (Yi0 − Y
__

0)
2
 = 3.75⋅10

−3
 .

The values of Z and Y obtained from the experimental data within the framework of the theory of experiment
design allow one to determine the vector B:

B = 
















α0

b1

b2
b3
b4
b5
















 = 
















0.734

− 0.006

− 0.388

− 0.198

− 0.269

− 0.103
















 ,     b0 = exp (a0) = exp (0.734) = 2.083 .
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Finally the regression equation has the form

K
^

 = 2.083 (Gg)
−0.066

 (Gw)−0.388
 ξgap

−0.198
 (Pc)

−0.269
 δ−0.103

 . (13)

The adequacy of the equation obtained was verified by the Fisher criterion:

Sr
2
 = 

1
N − l

  ∑ 

i=1

N

 (Yi − Y
^

i)
2
 ,   N = 16 ,   l = 6 ,

Sr
2
 = 0.011 ,   Fcal = 

Sr
2

S
2
 = 

0.011

3.75⋅10
−3

 = 2.9 ,   Ft = F0.05 (10 ; 4) = 5.96 .

The analogous processing of the results of the experiments according to the design of the full factorial experiment
with the additional 16 experiments (in the case of separation of the nonmixed influence of individual parameters by a
half-replicate) gives the following mathematical model of the heat-transfer intensity:

K̂ = 1.784 (Gg)
−0.139

 (Gw)−0.344
 ξgap

−0.159
 (Pc)

−0.272
 δ−0.074

 . (14)

The adequacy of the equation obtained to the experimental data was verified by the Fisher criterion. In this case, Fcal
= 5.3, i.e., Fcal < Ftab = 5.7. Consequently, the equation obtained describes the experimental data adequately. A com-
parison of relations (13) and (14) and the results of estimation of the adequacy of these relations to the experimental
data show that the fractional factorial experiment as well as the full factorial experiment allow one to obtain suffi-
ciently accurate mathematical models that differ only slightly. To verify the possibility of using an even smaller num-
ber of experiments (the model contains only six members; therefore, even a half-replicate of 16 experiments is
redundant), we processed the experiments corresponding to one quarter-replicate. We obtained the following exponen-
tial model:

Fig. 1. Change in the heat-transfer intensity as a function of the working con-
sumption of the gas (a), consumption of the water for δ = 3⋅10−3 m (b), thick-
ness of the gas interlayer (c), capillary pressure in a gas cavity (d), and
thickness of the porous-element wall (e): a: 1) Gw = 8⋅10−4, ξgap = 1.5⋅10−6,
Pc = 0.3⋅105, and δ = 3⋅10−3; 2) 7.5⋅10−4, 1.5⋅10−6, 0.2⋅105, and 6⋅10−3; 3)
1⋅10−3, 4⋅10−6, 1⋅105 and 5⋅10−3; b: 1) Gg = 0.6⋅10−3, ξgap = 1.5⋅10−6, and Pc
= 0.3⋅105; 2) 0.3⋅10−3, 3⋅10−4, and 0.2⋅105; 3) 1.2⋅10−3, 4⋅10−5, and 1⋅105; c:
1) Gw = 8⋅10−4, Gg = 0.6⋅10−3, Pc = 0.3⋅105, and δ = 3⋅10−3; 2) 12.5⋅10−4,
0.3⋅10−3, 1⋅105, and 3⋅10−3; 3) 1⋅10−3, 0.3⋅10−3, 1⋅105, and 4⋅10−3; d: 1) Gw =
8⋅10−4, ξgap = 1.5⋅10−5, Gg = 0.6⋅10−3, and δ = 3⋅10−3; 2) 7.5⋅10−4, 1.5⋅10−5,
1.2⋅10−3, and 3⋅10−3; 3) 1⋅10−3, 1.5⋅10−5, 1.2⋅10−3, and 4⋅10−3; e: 1) Gw =
8⋅10−4, ξgap = 1.5⋅10−5, Pc = 0.3⋅105, and Gg = 0.6⋅10−3; 2) 12.5⋅10−4, 3⋅10−4,
1⋅105, and 1.2⋅10−3; 3) 1⋅10−3, 3⋅10−4, 1⋅105, and 1.2⋅10−3.
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K̂ = 2.428 (Gg)
−0.255

 (Gw)−0.268
 ξgap

−0.164
 (Pc)

−0.293
 δ−0.341

 .

Statistical verification of the model has shown that S2 = 3.75⋅10−3, Fcal = 2.8, Ftab = 6.94, and Fcal < Ftab. Conse-
quently, the model obtained describes the experiment adequately.

Thus, the use of the theory of fractional factorial experiment allows one to significantly decrease the number
of experiments and obtain an adequate mathematical model of the heat-transfer intensity in the characteristic range of
variation of the parameters determining the working capacity of a mould for contactless moulding of a molten-metal
medium. The calculation results are presented in Fig. 1.

The use of the theory of experiment design (full factorial experiment or fractional factorial experiment) allows
one to significantly decrease the number of adjusting experiments and obtain an adequate mathematical model of the
heat-transfer intensity in the characteristic range of variation of the parameters determining the working capacity of an
apparatus for contactless moulding of alloys. It is recommended that the results obtained be taken into account in sub-
sequent investigations, especially in analysis of conditions providing the formation and maintenance of a thin gas in-
terlayer between the molten-metal medium and the porous wall of a compact stationary apparatus in the zone of
moulding of a casting.

NOTATION

Rcav, radius of the gas cavity in the near-wall layer, m; Pc, capillary pressure in the gas cavity, Pa; rh, radius
of the outlet hole in the porous wall, m; Pm, metallostatic pressure at the level of 1 m, Pa; K, heat-transfer coefficient,
W/(m2⋅K); ξgap, value of the gas interlayer (gap), m; Gg, consumption of the gas rejecting the melt, kg/m3; Gw, con-
sumption of the water necessary for cooling of the working wall, kg/m3; δ, thickness of the porous-element wall, m;
Xj (j = 0, 1, 2, 3, 4, 5), factors; Xmax and Xmin, maximum and minimum values of the factor; Xj0, initial level of the
jth factor; Jj, interval of variation of the jth factor; xj, dimensionless value of the jth factor; N, number of experiments;
k, number of factors; m, number of parallel experiments; bj, coefficient of the regression equation; ∆bj, confidence in-
terval of the regression coefficients; t, tabular value of the Student criterion; Sr, residual variance; α, significance level;
Ki, results of experimental determination of the response function; K

^
i, values of the quantity K determined from the

regression equation; l, number of significant coefficients in the regression equation; Fcal, calculated Fisher criterion;
Ftab, tabular value of the Fisher criterion; f, number of degrees of freedom.
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